23 research outputs found

    Enhancing Approximations for Regular Reachability Analysis

    Get PDF
    This paper introduces two mechanisms for computing over-approximations of sets of reachable states, with the aim of ensuring termination of state-space exploration. The first mechanism consists in over-approximating the automata representing reachable sets by merging some of their states with respect to simple syntactic criteria, or a combination of such criteria. The second approximation mechanism consists in manipulating an auxiliary automaton when applying a transducer representing the transition relation to an automaton encoding the initial states. In addition, for the second mechanism we propose a new approach to refine the approximations depending on a property of interest. The proposals are evaluated on examples of mutual exclusion protocols

    How to Tackle Integer Weighted Automata Positivity

    Get PDF
    International audienceThis paper is dedicated to candidate abstractions to capture relevant aspects of the integer weighted automata. The expected effect of applying these abstractions is studied to build the deterministic reachability graphs allowing us to semi-decide the positivity problem on these automata. Moreover, the papers reports on the implementations and experimental results, and discusses other encodings

    Verifying Temporal Regular Properties of Abstractions of Term Rewriting Systems

    Get PDF
    The tree automaton completion is an algorithm used for proving safety properties of systems that can be modeled by a term rewriting system. This representation and verification technique works well for proving properties of infinite systems like cryptographic protocols or more recently on Java Bytecode programs. This algorithm computes a tree automaton which represents a (regular) over approximation of the set of reachable terms by rewriting initial terms. This approach is limited by the lack of information about rewriting relation between terms. Actually, terms in relation by rewriting are in the same equivalence class: there are recognized by the same state in the tree automaton. Our objective is to produce an automaton embedding an abstraction of the rewriting relation sufficient to prove temporal properties of the term rewriting system. We propose to extend the algorithm to produce an automaton having more equivalence classes to distinguish a term or a subterm from its successors w.r.t. rewriting. While ground transitions are used to recognize equivalence classes of terms, epsilon-transitions represent the rewriting relation between terms. From the completed automaton, it is possible to automatically build a Kripke structure abstracting the rewriting sequence. States of the Kripke structure are states of the tree automaton and the transition relation is given by the set of epsilon-transitions. States of the Kripke structure are labelled by the set of terms recognized using ground transitions. On this Kripke structure, we define the Regular Linear Temporal Logic (R-LTL) for expressing properties. Such properties can then be checked using standard model checking algorithms. The only difference between LTL and R-LTL is that predicates are replaced by regular sets of acceptable terms

    Towards an Efficient Implementation of Tree Automata Completion

    Get PDF
    Term Rewriting Systems (TRSs) are now commonly used as a modeling language for applications. In those rewriting based models, reachability analysis, i.e. proving or disproving that a given term is reachable from a set of input terms, provides an efficient verification technique. Using a tree automata completion technique, it has been shown that the non reachability of a term t can be verified by computing an overapproximation of the set of reachable terms and proving that t is not in the over-approximation. Since the verification of real programs gives rise to rewrite models of significant size, efficient implementations of completion are essential. We present in this paper a TRS transformation preserving the reachability analysis by tree automata completion. This transformation makes the completion implementation based on rewriting techniques possible. Thus, the reduction of a term to a state by a tree automaton is fully handled by rewriting. This approach has been prototyped in Tom, a language extension which adds rewriting primitives to Java. The first experiments are very promising relative to the state-of-the-art tool Timbuk

    Characterizing Conclusive Approximations by Logical Formulae

    Get PDF
    Considering an initial set of terms E, a rewriting relation R and a goal set of terms Bad, reachability analysis in term rewriting tries to answer to the following question: does there exists at least one term of Bad that can be reached from E using the rewriting relation R? Some of the approaches try to show that there exists at least one term of Bad reachable from E using the rewriting relation R by computing the set of reachable terms. Some others tackle the unreachability problem i.e. no term of Bad is reachable by rewriting from E. For the latter, over-approximations are computed. A main obstacle is to be able to compute an over-approximation precise enough that does not intersect Bad i.e. a conclusive approximation. This notion of precision is often defined by a very technical parameter of techniques implementing this over-approximation approach. In this paper, we propose a new characterization of conclusive approximations by logical formulae generated from a new kind of automata called symbolic tree automata. Solving a such formula leads automatically to a conclusive approximation without extra technical parameters
    corecore